好心情说说吧,你身边的情绪管理专家!
好心情说说专题汇总 心情不好怎么办
高中数学课件
作为一位不辞辛劳的人民教师,通常需要用到教案来辅助教学,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编精心整理的高三数学三角函数复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学三角函数课件和教案 篇1教学准备
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件。
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π)。
并规定0向量与任何向量的数量积为0。
×探究:1、向量数量积是一个向量还是一个数量?它的`符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定。
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分。符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替。
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0。因为其中cosq有可能为0。
高中数学三角函数课件和教案 篇2教学目标:
1.结合实际问题情景,理解分层抽样的必要性和重要性;
2.学会用分层抽样的方法从总体中抽取样本;
3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.
教学重点:
通过实例理解分层抽样的方法.
教学难点:
分层抽样的步骤.
教学过程:
一、问题情境
1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.
2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?
二、学生活动
能否用简单随机抽样或系统抽样进行抽样,为什么?
查看更多>>身为一名刚到岗的人民教师,教学是我们的任务之一,对教学中的新发现可以写在教学反思中,教学反思我们应该怎么写呢?以下是小编帮大家整理的高中数学教学反思,欢迎大家分享。
高中数学课堂教学反思 篇1我将从以下几个方面说一说自己在教学中体会:
一、把握细节
曾听过细节决定成败,虽说有夸大其词的说法,但从另一方面说明细节的重要性。在一堂课之中这细节可能是某个问题——如反函数的提出,也可能是某个问题的解释——复合函数的单调性,也许是某个内容的先后问题——如分段函数的奇偶性的提出,也学是对学生的态度等。一堂课之中,细节处理的好一点,缺憾就少一点。
二、把握重难点
再讲复合函数的单调性时,要强调特殊到一般的认识过程。呈现的方式不拘泥于一种形式,复合函数的单调性涉及到多次对应,可以以表格的形式体现,也可以以集合的图示体现,但要强调要在区间中取值。从中学生可较为容易的理解——同增异减这一结论。如果为了加强理解可举具体的实例,根据定义结合参与复合的两个函数的单调性给出证明。
三、注重知识的系统化、综合化
每堂课都有许多知识点。就新课而言,每个知识点都可以进行变式、坡式的训练。单一的重复的训练是机械而且是没有多大益处的。重复有必要,但要适可而止。要在重复中提高,这就需要在系统、综合方面加强训练,以启迪、发散思维。如数学中常讲的含参数的问题,最值中涉及到二次函数轴动或是区间动的问题。一般而言,动态的问题要比静态的问题有难度。所以要在这方面逐步的渗透。
四、注意如何设置问题
设置问题是一节课的重要环节。根据内容设置一系列有梯度的问题。设置问题要注意的几个原则:①必要性;②针对性;③准确性;④层次性;⑤时效性;⑥创新性;⑦价值性;⑧逻辑性。如:如何把反函数给学生讲的通俗易懂。有一个角度:反解,原来的应变量变成了自变量,换言之坐标系发生了怎样的变化。可理解成沿某条直线翻转了一百八十度。
五、把握课堂环节
在课堂环节方面:要注意一堂课的设计流程,注意每个环节的衔接,每个环节的解释。出示例题、问题、习题首先要留给学生思考的时间。其次自己要准备的特别的充分,特别的熟练,要有预见性,自信、从容,那种兴奋、冲动的热情,释放出愉悦的能量。学生什么情况都有可能出现,也许某一位同学是这里不理解,也许这位同学是那里不理解。要照顾到大多数的同学,而不是听到了从个别
查看更多>>作为一位杰出的教职工,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。教学设计要怎么写呢?以下是小编整理的高中数学教学设计,仅供参考,希望能够帮助到大家。
高中数学课本教案模板 篇1教学目标:
(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.
(2)进一步理解曲线的方程和方程的曲线.
(3)初步掌握求曲线方程的方法.
(4)通过本节内容的教学,培养学生分析问题和转化的能力.
教学重点、难点:求曲线的方程.
教学用具:
计算机.
教学方法:
启发引导法,讨论法.
教学过程:
【引入】
1.提问:什么是曲线的方程和方程的曲线.
学生思考并回答.教师强调.
2.坐标法和解析几何的意义、基本问题.
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:
(1)根据已知条件,求出表示平面曲线的方程.
(2)通过方程,研究平面曲线的性质.
事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.
【问题】
如何根据已知条件,求出曲线的方程.
【实例分析】
例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.
首先由学生分析:根据直线方程的知识,运用点斜式即可解决.
解法一:易求线段的中点坐标为(1,3),
由斜率关系可求得l的斜率为
于是有
即l的方程为
①
分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?
(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).
证明:(1)曲线上的点的坐标都是这个方程的解.
设是线段的垂直平分线上任意一点,则
即
将上式两边平方,整理得
这说明点的坐标是方程的解.
(2)以这个方程的解为坐标的点都是曲线上的点.
设点的坐标是方程①的任意一解,则
到、
查看更多>>作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么应当如何写教案呢?以下是小编精心整理的高一数学三角函数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高中数学三角函数ppt内容优秀课件 篇1一、说教材
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。
二、说学情
合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。
高中的学生掌握了必须的基础知识,思维较敏捷,动手能力较强,但理解能力、自主学习能力较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:
(一)知识与技能
会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法
经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的能力。
(三)情感态度价值观
经过本节的`学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
四、说教学重难点
本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点
(一)教学重点
由正弦函数的图象得到正弦函数的性质。
(二)教学难点
正弦函数的周期性和单调性。
五、说教法和学法
此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极
查看更多>>